Utilities¶
Text to Embeddings¶
Transforms a block of text to embeddings using the specified transformer.
Requires the vector-serve
container to be set via vectorize.embedding_service_url
, or an OpenAI key to be set if using OpenAI embedding models.
vectorize."encode"(
"input" TEXT,
"model_name" TEXT DEFAULT 'sentence-transformers/all-MiniLM-L6-v2',
"api_key" TEXT DEFAULT NULL
) RETURNS double precision[]
Parameters:
Parameter | Type | Description |
---|---|---|
input | text | Raw text to be transformed to an embedding |
model_name | text | Name of the sentence-transformer or OpenAI model to use. |
api_key | text | API key for the transformer. Defaults to NULL. |
Example¶
select vectorize.encode(
input => 'the quick brown fox jumped over the lazy dogs',
model_name => 'sentence-transformers/multi-qa-MiniLM-L6-dot-v1'
);
{-0.2556323707103729,-0.3213586211204529 ..., -0.0951206386089325}
Updating the Database¶
Configure vectorize
to run on a database other than the default postgres
.
Note that when making this change, it's also required to update pg_cron
such that its corresponding background workers also connect to the appropriate database.
Example¶
ALTER SYSTEM SET cron.database_name TO 'my_new_db';
ALTER SYSTEM SET vectorize.database_name TO 'my_new_db';
Then, restart postgres to apply the changes and, if you haven't already, enable vectorize
in your new database.